农业无人机
工业无人机
军警无人机
娱教无人机
水下无人机
反无人机设备
无人机配件
无人机租赁
无人机培训
当前位置:全球无人机网 » 无人机新闻 » 农林植保 » 正文

无人机与蜜蜂的第一次“亲密”合作

发布日期:2018-09-16  来源:极飞科技  作者:Cassie Ma我要投稿我要评论

  近几十年来,蜜蜂这一物种遭到了近乎毁灭性的打击。环境污染、气候变化、新发病虫害不断增加(如瓦螨寄生虫)等等原因,导致了全世界50%以上蜜蜂的死亡。从环境科学与经济学两个角度来讲,蜜蜂数量的减少不仅影响了生态多样性,同样也影响到了大部分粮食、花卉、果树及其他有花作物的授粉,造成农作物减产。为此,南澳州农业科研中心的Mickey Wang 带领其研究团队与极飞科技合作,第一次突破性地通过“电子蜜蜂”——无人机协助蜜蜂授粉的实验,找到了生态友好的农业解决方案。

  没有蜜蜂的世界,人类只能活4年?

  从1994年开始,蜜蜂开始神秘消失,引发了全世界的关注。世界各大知名报刊,包括美国的《华盛顿邮报》、德国的《明镜周刊》、英国的《独立报》,以及美国的《国际先驱论坛报》,争相报道了这一现象,并声称20世纪最伟大的物理学家爱因斯坦说过:“如果蜜蜂从地球上消失,人类将只能再存活4年。没有蜜蜂,没有授粉,没有植物,没有动物,也就没有人类。” (1)

  

  该“名人名言” 的证伪道阻且长,没有证据能够证明爱因斯坦是否真的说过这句话,也没有研究能够证实这句话里人类大限的科学与真实性,但毋庸置疑的是,这一说法的传播借着爱因斯坦的名号,为世人敲醒了警钟。

  昆虫学家梅·贝伦鲍姆博士将蜂群神秘消失现象命名为“蜂群崩溃综合征”(又称蜂群衰竭失调,colony CollapseDisorder,简称CCD)(2),这一征结是在许多因素的共同影响下出现的。波及地区从北美洲逐渐发展到欧洲和亚洲等地,从2006年末至今持续已有6年时间,尚无有效的应对措施。

  来自新西兰的养蜂、蜂蜜生产组织BeesOnline的专家Maureen Maxwell表示:“如果没有蜜蜂授粉,这个世界将发生巨大的变化。蜜蜂直接影响着我们的大部分粮食和有花作物,没有蜜蜂,我们必须显著增加化肥的使用,这将导致大面积的水体污染,最终污染我们的食物和生存环境。”(3)中国农业科学院蜜蜂研究所的研究表明,CCD引发的蜜蜂数量的减少,将会引起“授粉危机”,进而影响农作物的产量和生态平衡,还会危及蜂产品下游产业。(4)

  “授粉危机”

  以澳大利亚为例,近年来澳大利亚果园的面积不断扩大,气候变化、蜜蜂数量的下降导致果树天然授粉的工作效率受到了很大影响。以虫媒传粉作为主要传粉方式的果树(如:苹果、梨、杏仁、桃子、樱桃等),传粉率大幅降低,直接影响坐果率与产量。

  坐果指经授粉、受精形成的幼果能正常生长发育而不脱落的现象

  在受影响的果树作物中,传粉率下降对于杏仁树种植的打击最为明显。杏仁树又称为扁桃仁、巴旦木,是一种经济价值非常高的果树。据《澳华财经在线》、《国际果蔬报道》提供的数据显示,早在2014/15年,澳大利亚杏仁出口总额就已高达5.22亿澳元,成为全球第二大杏仁出口国。(5)2014/15年杏仁年产量已分别达到8万、9万吨之多,成为14财年产值最高的园艺出口产品。(6) 据Statisa网(statisa.com)农业板块报道,2016/17年,仅针对西欧地区,澳大利亚杏仁出口额就已达1.95亿澳元。(7)

  由以上数据可见,杏仁树早已成为澳大利亚最主要的经济作物之一。杏仁树的种植,不仅需要蜜蜂进行虫媒传粉,还需要杂交授粉(即异花授粉,不同品种的果树花相互传粉),才能产出果实。杂交授粉成功与否,高度依赖蜜蜂在不同品种的果树间采集花粉和花蜜的过程,即蜜蜂携带花粉,完成杏仁树异花杂交授粉的过程。

无人机与蜜蜂的第一次“亲密”合作

  以市面上经济价值最高,最受民众欢迎的杏仁品种 Nonpariel 为例。由于杏仁树有自交不孕、自花不实的特性,通过杂交授粉种植出 Nonpariel 品种的杏仁,需要果农将Nonpariel杏仁树与其他杏仁品种混种,每种植两到三行Nonpariel品种,间隔种植一到两行授粉品种,通过蜜蜂在不同树种间的采粉、传粉进行杂交授粉。

杏仁果园里每一条不同品种的杏仁树颜色有所不同

  在这种环境下,低效的蜜蜂传粉、授粉加之蜜蜂数量的减少,会对杏仁的产量造成很大的影响。首先,通过养殖蜜蜂在间隔耕种的树种间采粉传粉,蜜蜂的行为并不可控,授粉的均匀度直接关联蜜蜂的飞行采粉。举例来说,如果蜜蜂在Nonpariel杏仁树与另一品种杏仁混种树的区域采粉传粉,部分工蜂在授粉品种区域采集了足够花粉即返回蜂巢,可能无法将育种花粉均匀授粉到 Nonpariel 树种区域。其次杏仁树一般早春时期开花,这一时期天气变化无常,频繁的阴雨天气和寒流会造成蜜蜂无法正常出行采蜜。此外,由于杏仁果园都位于比较偏远干旱的沙漠地区,蜂箱需要被远距离的运输至果园,易引发CCD现象相,导致蜜蜂死亡。(8)沙漠地区风速过高,会导致蜜蜂无法正常飞行、蜂巢内温度波动大,削弱蜜蜂的免疫力,倘若无法及时补充优质花粉,恢复蜜蜂原有的蛋白水平帮助其增强体质,蜂群对疾病的敏感性会增加,这意味着病菌和原虫更易侵染蜜蜂。(9)

  因此,找到既能保护蜜蜂物种与数量,又能与蜜蜂合作、解决蜜蜂授粉不足问题的新型授粉方式,是杏仁树、果树种植者们,以及相关领域的专家学者们迫切想要解决的。

正在采集杏仁花粉的蜜蜂,腿上的“花粉蓝”已经装满了两个大花粉球

  解决方案

  为了在保护蜜蜂的同时帮助果农解决授粉不足的难题,澳大利亚国立大学、澳大利亚联邦科学与工业研究组织合作(CSIRO),对杏仁树进行了为期三年的人工授粉研究,从中获取了大量的经验。基于该研究经验,南澳州农业科研中心的Mickey Wang 带领其研究团队,分别对蜜蜂授粉结合人力授粉、蜜蜂授粉结合无人机授粉与单一蜜蜂授粉进行了比对实验,实验所使用的无人机由广州极飞科技有限公司提供,机型为P20 植保无人机。

  研究表明,传统的人力喷洒授粉耗时长,并且难以对高大的果树进行有效、快速的喷洒,人力喷洒辅助蜜蜂授粉显然并不现实。而通过使用极飞P20无人机实施的授粉实验,则取得了重大突破。

极飞 P20 植保无人机正在为杏仁树授粉

  在蜜蜂采集杏仁花粉后,研究小组使用了极飞P20无人机均匀喷洒花粉,为杏仁树进行人工授粉。对比实验结果显示,无人机授粉不仅解决了异花杂交的授粉问题,相比仅通过蜜蜂授粉的果树,产量还提高了15%。

  实验成功后,位于维多利亚州的Thurla农场与位于南澳河边地区的Clark Taylor农场相继与极飞科技展开合作,使用极飞P系列植保无人机对3750亩杏仁树进行了规模化授粉,效果超出了农场主的预期。通过无人机授粉与蜜蜂采粉结合,改变传统的杏仁树单一虫媒授粉方式,解决了果农们对蜂群数量不足以及蜜蜂工作效率的担忧,并且提高了果树的产量。

  “电子蜜蜂”

  无人机授粉造作简单,保证花粉均匀地喷洒在需要授粉的区域,成为了果园中的“电子蜜蜂”。在蜜蜂采集花粉后,可通过人工采集的其他花粉将所需花粉进行置换,保证蜜蜂有足够的食物。同时将待授粉果树的所需花粉与溶剂进行配比,再由无人机进行均匀的喷洒。由于无人机统一收集花粉,喷洒量大且集中,果农可以在不同区域集中种植采粉、授粉品种果树,蜜蜂可在采粉区域工作,“电子蜜蜂”则在授粉区域工作,二者协作,大大提高了果树种植、授粉的工作效率,降低了传粉、授粉成本。

Mickey Wang正在收集蜜蜂所采集的、用于无人机喷洒的杏仁花粉

  一方面,蜜蜂只需留在采粉区采粉,能够保证及时补足花粉,保持蛋白质水平,降低虫害发生的几率,尽可能地保护采粉蜜蜂种群的数量与安全。同时,授粉环节由无人机取代,时间灵活,减少了因天气变化与其他原因对授粉造成的影响,使得大规模的人工授粉变得实际可行。如通过进一步的实验与推广被大范围应用于杏仁树授粉,形成无人机的“蜂群”效应,将对整个杏仁产业产生颠覆性的影响。

  如果有一天,世界上不再有蜜蜂,后果之严重是我们难以想象的......

  每一个物种都有其存在的合理性以及对于整个生态系统的价值,人为因素造成的物种灭亡,总有一天会祸及人类自身。远距离的“转地授粉”对蜜蜂造成的影响,仅仅是造成蜂群衰竭失调的众多人为因素之一,无人机授粉也仅仅是人类保护蜜蜂的一次成功尝试。

  未来,希望更多的人能够关注蜜蜂与物种多样性的问题,参与到保护工作中来,不要让大灭绝时代成为现实。

 
本文链接:https://www.81uav.cn/uav-news/201809/16/42636.html
标签:  
0相关评论
免责声明:凡注明来源全球无人机网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,请注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

图文推荐

推荐品牌

关于本站

合作服务电话

  • 客服热线:0755-23779287
  • 展会负责:18682042306
  • 广告合作:点击这里给我发消息
  • 展会合作:点击这里给我发消息

公众号/APP下载


    (公众号)


    (Android下载)

Copyright©2005-2021 81UAV.CN All Rights Reserved  访问和使用全球无人机网,即表明您已完全接受和服从我们的用户协议。 SITEMAPS 网站地图 网站留言
运营商: 湛江中龙网络科技有限公司 全球无人机网 
ICP备案号:粤ICP备2023038372号-1 
全国公安机关 备案信息 可信网站不良举报 文明转播